Dynamic optimal portfolio choice in a jump-diffusion model with investment constraints
نویسندگان
چکیده
We consider the dynamic portfolio choice problem in a jump-diffusion model, where an investor may face constraints on her portfolio weights: for instance, no-short-selling constraints. It is a daunting task to use standard numerical methods to solve a constrained portfolio choice problem, especially when there is a large number of state variables. By suitably embedding the constrained problem in an appropriate family of unconstrained ones, we provide some equivalent optimality conditions for the indirect value function and optimal portfolio weights. These results simplify and help to solve the constrained optimal portfolio choice problem in jump-diffusion models. Finally, we apply our theoretical results to several examples, to examine the impact of no-short-selling and/or no-borrowing constraints on the performance of optimal portfolio strategies. 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Stochastic-Volatility, Jump-Diffusion Optimal Portfolio Problem with Jumps in Returns and Volatility
This paper treats the risk-averse optimal portfolio problem with consumption in continuous time for a stochastic-jump-volatility, jump-diffusion (SJVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SJVJD model with logtruncated-double-exponential jump-amplitude distribution in returns and exponential jumpamplitude distribution in volatility for...
متن کاملOptimal Portfolio Problem for Stochastic-Volatility, Jump-Diffusion Models with Jump-Bankruptcy Condition: Practical Theory
This paper treats the risk-averse optimal portfolio problem with consumption in continuous time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SVJD model with double-uniform jumpamplitude distributions and time-varying market parameters for the optimal portfolio problem. Although unlimited borro...
متن کاملMULTIPERIOD CREDIBILITIC MEAN SEMI-ABSOLUTE DEVIATION PORTFOLIO SELECTION
In this paper, we discuss a multiperiod portfolio selection problem with fuzzy returns. We present a new credibilitic multiperiod mean semi- absolute deviation portfolio selection with some real factors including transaction costs, borrowing constraints, entropy constraints, threshold constraints and risk control. In the proposed model, we quantify the investment return and risk associated with...
متن کاملOptimal Portfolio Problem for Stochastic-Volatility, Jump-Diffusion Models with Jump-Bankruptcy Condition: Practical Theory and Computation
Abstract This paper treats the risk-averse optimal portfolio problem with consumption in continuous time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SVJD model with double-uniform jump-amplitude distributions and time-varying market parameters for the optimal portfolio problem. Although unlim...
متن کاملContinuous time portfolio optimization
This paper presents dynamic portfolio model based on the Merton's optimal investment-consumption model, which combines dynamic synthetic put option using risk-free and risky assets. This paper is extended version of methodological paper published by Yuan Yao (2012). Because of the long history of the development of foreign financial market, with a variety of financial derivatives, the study on ...
متن کامل